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CHAPTER 1

INTRODUCTION

1.1 Objective and Scope

The availability, diversity, and utilization of anisotropic materials

have increased at a remarkable rate during the past few decades. When

attempts were made to predict the behavior of these materials, it was

evident that the available theoretical methods were far from satisfactory.

As a result, much renewed interest has been directed to the theory of anis-

tropic elasticity. In particular, the problem of stress concentration

around cavities in a medium occupying the entire space has long been the

subject of numerous investigations, not only because of its important role

in fundamental elasticity problems but also because of modern engineering

design concerns.

The objective of this study is to develop an explicit analytical solu-

tion for the non-axisymmetric problem of three-dimensional stress

concentration in a transversely isotropic medium containing a spheroidal or

spherical cavity.

1.2 Hlitory and Literature Survey

Stress concentration can be described as the local intensification of

stress as the result of nearby changes in geometry or discontinuities in

material or load. When a cavity exists inside the material, it gives rise

to stress concentration and often leads to structural failure. Since the

N"--: .* . ".'-, - - ,v-. ."-q' ," " .. ' .' -----.. -' 4"."'9"..".;.' -. '-..
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first investigations of the stress concentration problem during the second

half of the 19th century, considerable research has been done on the

problems of determining the stress concentration produced in an elastic

body by a spherical or spheroidal cavity. A general review of stress

concentration in linear elasticity has been given in a 1958 survey paper by

Sternberg [40]. Eight years later, Neuber and Hahn [311 again reviewed

stress concentration in scientific research and engineering. Because of

the enormous number of articles concerning this subject, we will only

briefly present the work relevant to the three-dimensional stress concen-

tration problems in an infinite medium containing a spheroidal or spherical

cavity or inclusion.

As early as 1866, Lam6 [221 investigated the problem of the spherical

shell under uniform external pressure. A few decades later, Larmor [24]

studied the effect of a spherical cavity on a field of pure shear. A

closed form solution for a spherical cavity in an infinite isotropic medium

under uniaxial tension was presented, without derivation, by Southwell and

Gough [39]. Goodier [14] investigated the concentration of stress around

spherical and cylindrical inclusions and obtained in a general form the

Southwell and Gough solution. The spheroidal cavity under uniform axial

tension, pure shear, and torsion was first considered by Neuber [301. An

investigation of the stress concentration around an ellipsoidal cavity in

an isotropic medium under arbitrary plane stress perpendicular to the axis

of revolution of the cavity was undertaken in 1947 by Sadowsky and

Sternberg [35]. They further presented an analysis of the triaxial ellip-

soidal cavity in an infinite medium under a uniform stress field at

V V V.
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infinity [36]. In 1951, Edwards [91 obtained a solution for the stress

concentration around a spheroidal inclusion in a medium subjected to a uni-

form stress field at infinity. A general representation of the stress

concentration problems in isotropic materials appeared in 1965 when

Podil'chuk [32) studied the deformation of an axisymmetrically loaded elas-

tic spheroidal cavity. Later, he extended his study to include the non-

axisymmetric deformation of spheroidal cavities [331.

Although the stress concentration problem has been extended to aniso-

tropic materials, very few three-dimensional anisotropic elasticity

problems have been solved. Chen [51 solved the problem of uniaxial axisym-

metric tension applied at large distances from a cavity in a transversely

isotropic medium. In 1971, he also presented the general solution for an

infinite elastic transversely isotropic medium containing a spheroidal

inclusion (71 with the restriction that the prescribed stress field is

axisymmetric and torsionless. In addition, he solved the spheroidal inclu-

sion problem under pure shear in and out of the plane of isotropy and

modified Bose's solution [31 for the torsion of a transversely isotropic

medium containing an isotropic inclusion, to the case of a spheroidal

inclusion in which the material may be transversely isotropic, provided

that the axes of anisotropy of both the medium and the inclusion be the

same [4). To the the best of our knowledge, Chen's solution for the stress

concentration around spheroidal inclusions and cavities in a transversely

isotropic material under pure shear are the only non-axyisymmetric problems

whose solutions are available. The present work extends the work by Chen

[4-71 whose solutions can be deduced from this approach.

AA -
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1.3 Organization of the Study

After the aforementioned historical review of the problem of stress

concentration, the basic formulae and the potential functions approach in

the three-dimensional elasticity theory of transversely isotropic materials

are presented in Chapters 2 and 3, respectively.

In Chapter 4, we introduce the special coordinate systems used to

solve the cavity problem and the potential functions in terms of the asso-

ciated Legendre functions of the first and second kind as well as some

important identities that the potential functions satisfy. The formulation

and the analytical approach of solving the first and second boundary value

problems of elasticity theory for a spheroidal cavity embedded in a trans-

versely isotropic medium are presented in Chapters 5 and 6. Problems for

cavities and inclusions subjected to a general constant stress field at

infinity are solved at the end of these two chapters.

In Chapter 7, numerical investigation of the stress concentration

factors associated with axisymmetric and non-axisymmetric problems for a

variety of materials is carried out. The effect of anisotropy on the

stress concentration factor is discussed.

Chapter 8 summarizes the developments of this study and makes recom-

mendations for further study.
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CHAPTER 2

TRANSVERSELY ISOTROPIC MATERIALS

2.1 Definition

A transversely isotropic material is an anisotropic one for which the

Hookean matrix at a point remains invariant under an arbitrary rotation

about an axis (the "axis of elastic symmetry" of the material).

There are some crystalline materials recognized as transversely

isotropic. These include ice, cadmium, cobalt, magnesium, and zinc. Other

examples of transverse isotropy are provided by materials having hexagonal

structures such as fiber-reinforced composites (21 as shown in Fig. 1 and

the honeycomb structures of Fig. 2, as well as laminated media (Fig. 3).

Stratified rocks and soils can also be modeled as a homogeneous transverse-

ly isotropic medium [23,37,38,421.

2.2 Fundamental Formulae

Consider a homogeneous transversely isotropic elastic medium occupying

a region of the three-dimensional Euclidian space referred to a fixed

cylindrical coordinates system (r, 0, z) in which the z-axis coincides with

material axis of symmetry. Let (ur, ue, uz ) denote the cylindrical scalar

components of the displacement vector and (Err, Cee, Yzz, Yez, Yrz, Yra)

denote engineering strains by
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u r

rr 3r

Ur + IdU
ee r r 8

3uz

zz z (2.2.1)

1 auz ;u96~z r 3e ' 3z

u r  )uz

Yrz ;z + 3r

I 3ur  
3ue U9¥r -- 4---

r r 36 ar r

In the absence of electrical and thermal effects, the generalized Hooke's

law [16,261 can be expressed in the form:

a r *c 1 2 c12  c13  0 0 0 Err,

a c c c 0 0 0 C.

zz 13  c13  c33  0 0 Czz
; (2.2.2)

O z0 0 0 c 4 0 0 V"
44 44

r 0 0 0 0 c 0
r z 44 , rz

are 0 0 0 0 0 ( c ii j r'

where cll, c12, c13, c3 3 and c44 are the five independent elastic constants

characterizing the medium and (orr, eel Ozz, O Crz, Ore) are the

components of the stress tensor. We may also write for convenience

c 66 - (c1 1  c 12).

S.

4.
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In certain applications of the theory of elasticity of transversely

isotropic materials, Hooke's law say be written in the form

rr a 1 a12 a13 0 0 0 -
rr 1 12r1

Lee a12  a11  a 1 3  0 0 0J.;

£zz a1 3  a1 3  a3 3  0 0 zz (2.2.3)

ez 0 0 0 a4 4  0 0az

rz 0 0 0 a44  0 arz

_Yre 0 0 0 0 0 2 (a1 1 - a1 2) ar9

In the literature, the coefficients all, a1 2 , a1 3 , a33, and a44  are called

"compliances" whereas the elastic constants are called "stiffnesses". We

may also write, for convenience, a66 - 2(a11 - a12).

It is evident from Eqs. (2.2.2) and (2.2.3) that the elastic constants

(stiffneeses) can be converted to the compliances and vice versa by the

standard determinant procedure for solving simultaneous equations. By

doing so, the following relationships are found:

(C1 1 C3 3 c 3 )

(C 1 -c 1 2 )(cllc 3 3 +c1 2c3 3 - 2c1 3)

(c 1 2 c3 3 - 2)

c1 3 )
a 1 2 ' -123 132

(c 1 1 - c 1 2 )(c 1 1 c 3 3 +c 1 2 c 3 3 -2c 13)

a 1 3 -- - 13 2
(c 1 1 c 3 3 +c 1 2 c 3 3 -2c13)

% % s % % % %l. - . . . . . - - . - -....
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(c 1 + ¢12 )
a 3 3 ( c c 1c- 2 3(c11 c 3 3 +c 1 2C 3 3 - 2c 13 )

a4 4  - (2.2.4)
C4 4

a66  2(a 1 1 -a 1 2 ) 2
66 11 -12

and

(a 1 1 a 3 3 a 3 )

(a 1 - a 1 2) (a 11 a 3 3 +a 1 2 a 3 3 - 23

(a 1 2 a 3 3  2

c 12 (al - a2) (ala3 +a a3 2a123 -

aa13 (2.2.5)

c13 (al 1 a3 3 +a 1 2 a3 3 - 2a 123 )

(a 11 +a 12) 2
(a 11 a 3 3 +&1 2 a 3 3 - a13 )

¢44 a4 4

=i(Cl c2)=.= !

C66  2 11  12  a6 6  2(a 11 - a 1 2)

% % .;Eel
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2.3 The Engineering Constants

Some authors replace the elastic constants and the compliances by the

so-called engineering constants which can be interpreted to be Young's

moduli, the shear moduli, and Poisson's ratios associated with various

directions (see [251). If we introduce these constants which are related

to the compliances by:

.j1 v
a1 1 *~ , a1 2  " , 13

(2.3.1)

33 E 44 ' 66 " G

Equations (2.2.3) cake the form:

1 . .
rr E E rr

Eo 1 0 0 0
E E E

Czz E E zz

- (2.3.2)
1

yt0 0 0 0 0z

Yez 0 0 0 0 0 Yz

re 0 0 0 0 2(1+v) .
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where:

E and E are Young's moduli in the plane of isotropy and perpendicular

to it respectively.

'. is Poisson's ratio characterizing transverse contraction in the

plane of isotropy when tension is applied in this plane.

.j is Poisson's ratio characterizing transverse contraction in the

plane of isotropy when tension is applied in a direction normal to the

plane of isotropy.

G and G are shear moduli for the plane of Isotropy and any plane per-

pendicular to it respectively.

The engineering constants and the elastic constants can be related to

each other by means of Eqs. (2.2.5) and (2.3.1). These relations are given

by:

E - 4c 6 6 (l - 3366

c11c 3 3 - c 1 3

C 
2

E-c Cfl13E c 33 c 11 - c 6 6

2c 3 3c 6 6v.1- 2
c 11 c33- c 13

- 13 c13
C1 +c12 c2(cI - c 6 6 )

G C44

G EG 2(l+v) = 66

.~ .* .*v* .* ~ *. * *
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and, inversely,

2G ( E ~2
C - -E 2

EI (1 0 2

E

__ ____ (2. 3.4)

T- (1- 2v)

C 3 3  -E2
-E (1 V) - 2,

C44

C66 G

For isocropic materials, the engineering constants and th~e elastic con-

stants are reduced to

2( - v) (2.3.5)

and

U. 33uV)L (2. 3.6)

C1 2  ~1.3 1-Z

c C E
C4 4 C 6 6 " (1+



12

where I and u are the well known Lame's constants, , is Poisson's ratio,

and E is Young's moduli.

2.4 Restriction on the Elastic Constants

Eubanks and Sternberg (151 show that the necessary and sufficient con-

ditions for positive definiteness of the strain energy densitv are that

11  c 1 2 1 > 0 C33  44>0 , c 6 6 >0

(2.4. 1)
2 2

c3 3(C11 +c 12) - 2c1 3 - c11 c3 3 -c 1 3 -c 1 3c 6 6 >0

or

a11 > ja121 > 0 , a3 3 > 0 a4 4 > 0 , a66 > 0

(2.
4

.z)

a33(al +1a1 2) - 2a13  0

or, equivalently,

E , E > 0 > 0 , > 02 (1 + v)

(2.4.3)

~2 E(1- ) 21D W > 0 , l < <

E

Negative values of Poisson's ratio have been reported indirectIv bv

Hearmon in Reference (191 for zinc and cadmium sulfide (CdS). This data is

questionable, since virtually all real materials have positive values of

Poisson's ratio. The negative values of Poisson's ratio are, therefore,

omitted from the discussion in Chapter 7.

"-', '. ,- ''," _ ."., ..'. . . .. . .. . ... ..- .. . • . .. -, .. .-.. .- ... .. .... .. ..'-.-. -.. . • .. -.'
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Inequalities (2.4.3) become for materials having positive Poisson's

ratio:

E > 0 , 0 0 , 0 < < I-22 E (2.,4)

E

the last inequality of (2.4.4) is plotted in Fig. 4. The interior area

bounded by a parabola corresponding to a specific value ofE , represents
E'

the valid domain of variation of Poisson's ratio. Line O represents the

isotropic matecials. It is noteworthy that for values of E > 2, Poisson's
E

ratio v might exceed unity.

2.5 Values of the Elastic Constants

The numerical values of the elastic constants for a variety of differ-

ent hexagonal crystalline and non-crystalline materials are reported by

Hearmon in the revised edition of Landolt-B6rnstein [191. Some of these

materials are listed in Tables I and 2. In both tables, the unit used for

10
the elastic constants cij is the gigapascal (GPa - 10 dyne/cm2 ) and the

unit used for the compliances ajj is the reciprocal of terapascal

(rPa - 103 GPa).

Moreover, the elastic constants of fiber reinforced materials can be

calculated by utilizing the technique developed by Hlavacek [17,181 or by

Hashin and Rosen [15]. Achenbach [i has presented a procedure for the

computation of the effective modull of laminated media while Salamon [37]

.d-

. ... ... . .ib ,I.luh~lutm mb,,liau.,a-,rmdh ai Al p =,.-.. .. . ..
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derived expressions for the elastic moduli of a stratified rock mass and

Wardle and Gerrard [42] discussed the restrictions on the ranges of some

of the five elastic constants.

I
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CHAPTER 3

POTENTIAL SOLUTIONS FOR TRANSVERSELY ISOTROPIC MATERIALS

3.1 Introduction

At the beginning of the twentieth century, Michell 128) and Fredholm

[131 generated important three-dimensional solutions in transversely

isotropic materials. Lekhnitskii [251 presented a solution procedure for

axisymmetric torsionless problems in terms of a single stress function

satisfying a fourth-order partial differential equation. Elliott [10-111

presented a comparable solution in terms of two stress functions each

satisfying a second-order partial differential equation. Shortly after

Elliot's presentation, Eubanks and Sternberg [121 proved the completeness

of the Lekhnitskii and Elliot representations for the case of axisymmetry.

Hu [21] introduced a third potential function suitable for non-axisymmetric

stress field. This solution was implied in Fredholm's work [131. The

completeness of the three-function approach for general non-axisymmetric

problems was proven in Reference 1411.

3.2 Fundamental Formulae

Adopting the notations in Section 2.2 and combining Eqs. (2.2.1) and

(2.2.2), we obtain the stress-displacement relations that take the form

a'

- - .°



I M

Urr
C + 2- 4- -rr II. , L r r L 3 ,

Ur  u r L1 Uf .uo ' z

+ - ++l( - + ) + C -' 1 r r r i€ ¢13 ,z

C1 C Ur +Ur + , uo +u .I. z
z 1 3  3 r r r ),i 33 )z

(3.2.1)

1 3uz )u9
44( r 73- + -- T

3 ur +Iuz
r c 4 4 ( -- +4-4 ) )

1 + 3ue u9-JO= "( -( 12)( i +U uq u

2 11 12 r 38 3r r

It has been shown [411 that in the absence of body forces, the following

representation is complete %

%'
r 1 2 3

u_ k- .€ 1 a2 + k 23 3

22

U r5~~ r "

.5

where 41 (r,e,z), ¢2(r,6,z) and 'j(r,8,z) satisfy the equations

2 2 2 (237 l € 7 2 2 " v 0 (3.2 .3)
~ 2 2 3

in which

. -. ., , . , . ..-. ..'.... .-. .-.-. .. . . .. .. . . . . .-. V . . . , . -. . . . . , .- L .- . . ,'



19

2 __ +___ +_ __ + V 12 (3.2.4)

.J ar 2  r ;r r 2 3e 2  -J 3 z2

In these equations, k1 and k 2 are the roots of the equation

c c +c)k2[(c +c 4 4 )2 2 -CC Ik+ (  +c 0 (3.2.5)

44 13 44) 13 +c 4 4  1 1c 3 3  c4 4  4 4 + 1 3

and v1 and are the roots of the equation

4 2

c11c44 v +[c 1 3 (2c 4 4 +c 1 3 ) -c 1 1c1 3  +c 3 3 c 4 4 - 0 (3.2.6)

2
whereas v is defined by

32 2c 44 c 44
V3 = a - (3.2.7)

3 c 11. c 12 c 66

2 2
The constants va nd v2 are either real or complex conjugate (with a real

part different from zero) depending upon the elastic constants, but the
2

constant v 3 is always real and positive. We also specify that i v 2' and

V3 always have positive real parts.
2 2

The constants k and k are related to v and V2  respectively by
1 212

c - C44 V (c + c
k a 4 J2 13  c44  (3.2.8)

c13 +c 4 4  c3 3 - 44

or, equivalently

2 k (c 1 3 + c 4 4 ) + c44 kJ c 3 3
c c11  c4 4 (1 + k1 ) + c3(3.2.9)

" ,J% . ' ''-,""- - V* ' .7"".- "'' """""' , ". ' - , .".". "". t . "- " -. - " ,* , " , " 0 "" "" -
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By using Eqs. (3.2.5), (3.2.6) and (3.2.8), it is not difficult to obtain

the following identities

2 2 . C3 3

i2 + V2 11 33 - c13 - 2c 44

1 2 1
.* (3.2.10)

k1k 2 - 1

2 2
k + k C1 1 C 3 3 +C4 4 +(c 1 3 + c44)

1 2 c44 (c1 3 + c44 )

Sometimes, it is convenient to employ three new variables defined by

z

z. -- , j -l, 2, 3 (3.2.11)

These new three variables generates three distinct spaces (r,:,z I) ,

(r, 9 ,z 2 ) and (r,,z 3) different from the physical space. The differential

operations 72 defined by Eq. (3.2.4) become, in the spaces (r,.,z.) the

Laplacian defined by

2 32 1 3 1 2 2.3r2  r r 2  2 2(.

the displacement components in Eq. (3.2.2) can be, alternately, expressed

in the following form

.5. -- . . * * . . .. .. .t ~ f .* . *. ..t ~ . .- f . . . .
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* rU + +
p}

Ur 3'r (1 2)  r

Ue"r 1 a 0 + $2 - (3.2.13)

k 7e 1  k2  a2

z v 3z v3
1 1 v2 az2

and, consequently, the stress components can be written in the form

(I + k) a2 1  i + k2) 2

1 2 2

66  r r r2  2 1 2 -

( + kI ) a2 
1  (1 + k2 2 2

coo -,C4 4 [ 2 2 2

1 1  2 2

-2c ( )  ( )] (3.2.14)66[ ar2  1 2 3r r M

a2 2C25 (( 22

zz- c4 4 [(1 + k1) 3 + (1 + k2 ) 2

az 2

(1 + k1) 1 a2 $1  (1 + k-3) 1 a $2 1 .2
COz =c44[ v 1  r 363z 1 

+  v 2  r a)oh 2  ' 3 ;r;)z3

(+k1) (1 + k2) a2* 2  2

S [rail v2  araz 2  v3 r 'Jz3
a2 14 v az +  32

ar 2c66 i 2 1 -)(I + c 6 (  +, 2 2

r re r 2  C6 6 r ir +z2 r 2 ;2

3.
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Numerical values of v.2 arnd kj are calculated for some materials arnd

listed in Tables 3 and 4 for real and complex kj respectively.



23

2
Table 3. Values of v and k for Selected MaterialsI i

S2 2

Material 1I 2 2 k k

Cobalt 2.999 0.379 1.044 4.471 0.2237

Graphite 9.040 0.004 0.009 504.1 0.0020

Hafnium 1.755 0.620 1.071 2.153 0.4644

Ice 2.706 0.408 0.883 3.719 0.2689

Magnesium 2.052 0.505 0.976 2.785 0.3590

Quartz 1.670 0.563 0.713 2.310 0.4329

Titanium 1.880 0.602 1.329 2.261 0.4423

Zirconium 2.675 0.431 0.954 3.504 0.2854

.

2
Table 4. Values of v and k for Selected Materials*

2 2Material 3 1 k

Berylium 1.216 1.050 + 0.3058 1 0.8491 + 0.5283 1

Cadmium 0.5297 0.575 - 0.3283 i 0.7779 + 0.6284 i

Zinc 0.5915 0.286 + 0.5411 i 0.0847 + 0.9964 J

P2 an2 r h oplxcnuaeo
*Values of and k are the complex conjugate of and k, respectively.

-i.

qm..

S..
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CHAPTER 4

THE SPHEROIDAL CAVITY PROBLEM

4.1 Statement of Problem

Consider an infinite elastic transversely isotropic medium, as shown

in Fig. 5, containing a spheroidal cavity whose surface is defined by

2 2z + L . I (4.1.1)

a2 b2

where a and b are the two semi-axes of the spheroid.

In the absence of body forces, we wish to develop displacement fields

whose stresses vanish at infinity and which satisfy given boundary condi-

tions on the cavity surface. In this chapter, we introduce applicable

coordinate systems and potential functions. General solutions to problems

in which either the displacement vector or the surface traction vector is

prescribed on the surface of the cavity will be considered in the following

chapters.

4.2 The Coordinate System

We have to determine the potential functions ¢ (r, ,z

and ';(r,e,zl) which are the solution of Laplace's equation in the spaces

(r,9,Zl), (r,e,z2 ) and (r,e,z 3 ) respectively. Since we have a problem in

which the natural boundaries are spheroids with center at the origin of

coordinates, it is suitable to employ [5-91 the spheroidal coordinate

systems defined by d

,1

". +•L. ,,w+,, .. ,+.. ... . •. . - . . - . . '. . . - * . , ... •. * . ,.- ' -j - . . *
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x a C1(q2 - 1) (1 - p cose

i i J

zi a a. q pj

or equivalently.

r - n(q - 1) (1 -2

(4.2.2)
zj M n q pj

where q, and pj are peraeters which can be determined for any point whose

coordinates (r,z) are known. The a are constants to be determined later.

Let o denote the value q on the spheroidal surface, then the three

coordinate systeim coincide on the surface of spheroid if the following

equalities are satisfied

2 2 2 2 2 2 2 2 2 2
1 1 =  V2 Q 3 ' 3 a

2 2 _ 2 21) 2
a1 (10 al (P1)

2 3 3

from which we obtain

2
2 a 2 2

V

a a

~ 2  b2

where j 1, 2 and 3.

"S " " ' 2 .. ' - " " " , " . , . .. -. ; " ' .'. " . ' . ' .' -'' '", ' . ' ' . • " " "
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It is interesting to note that when q. , Eq. (4.2.2) reduces to

the equation of the spheroidal surface described by Eq. (4.1.1) and the

2 z
parameters p. become independent of and equal The coordinate systems

defined by Eq. (4.2.2) can be represented graphically in the physical space

for real values of '. For example, when the cavity is spherical and

0.5 and 2.0, Eq. (4.2.2) generates two types of spheroidal and hyperbo-

loidal surfaces that have a common spherical surface corresponding to the

same value ,. . These coordinate systems are shown in Figs. 5 and h.
3

4.3 The Potential Functions

As indicated in Section 3.2, the potential functions P, , €, and

must satisfy Laplace's equation in tne spaces (r, ,z. ), (r,. ,z,) and

(r,-.,z ) respectively. It is well known [20, 29, 341 that the products

P-m(Pi) Q (q.) (cos m,_, sin m ) are harmonic In the spaces (r,-.,z. ) and

regular in the region exterior to a spheroid, where P-m(p. ) and *X(q. ) are

the associated Legendre functions of the first and second kind respectively

and will be defined explicitly later. For the problem at hand, the poten-

tial functions are constructed by the following combination of the Legendre

associated functions of first and second kiid:

= n-i- .i -t

* . .~' .. . 'n="i 71

A s7n-it-nm .71M



27

- n+l 2a

(P- P-M ( m (_,n-0 m-0 (2n+1) [Pn+l (P3) P+l 3  (p3) Qn-1(q 3)]

( A3nmSin me + B3nicos me4

J " 1,2

because they are harmonic in (r,ezj) and their firsc and second deriva-

tives vanish at Large distances from the spheroid. Furthermore, as will be
.4

shown later, the first derivative of the chosen potential functions with

respect to r or zj can be written in simple forms which lead to possible

solutions of the first and second boundary value problems.

In these potential functions, Pnipj) and en(q ) are the associated

Lagendre functions of degree n and order m, of the first and second kind

respectively. They are defined (20,27,34] by

S1 1 1

2.m 2 (Pi) 2 -m/ 2........ . n(p )(dP )f (4.3.2)
n (P) (-i 33P~P

Pi P pj

dqa (43.3)

a q q _ )./ d Q (q (4 3.4

in which

I dn(p - (4O3n
;. P(p"

n 2n1 dp
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1 q.4i q (.36

Qn(qJ) Pn (q.) Ln qJ - T(qj (4.3.6)

T"(q;) (2n- 1) (2n- 5) ) .
n n n 3(n -I) n-3n"-n

" (4.3.7)

(2n -9) 5(q ++5(n - 2)n-

Legendre associated functions defined by Eqs. (4.3.2) and (4.3.6) are

listed in Appendix A for different values of n and m.

The Legendre associated functions defined by Eqs. (4.3.2) and (4.3.7)

satisfy the following identities

1() -I 2 m qm

-Q (q) + (n+m)(n-m+l) Qn (q) 2 " Qn (q )

(q"-1)1

+m m-I 2m Q M- (q) (4.3.S)-Qn (q) + (n-m)(n-rn+1) 0n (q) = (q2  i) Q-~ q  438

n rn (q 2_ 0 m (q

-Q m+l(a) + (n+m)(n+m+1) Qn I (q) 1
n (q n+

and

(n-m)(n-m*) F -(m+l)(p) P -(m-1) (p) m r D pr(p))n n ( n

ni nm)n +l ) p-GTh-1) (p) + p- )- (p) = ___ __ -n p . .'
nn n-i

tn+m(n+m+1P- k-T~) (P) P-(rn)(P

(n - m) (n - m+ i) P (p) ?n -, n
n n (n-pi

' "''" " '%-% % %-% " ,' % " " ",% " % % " ,% ','"" " " "" ' " / ","- " " -" ..# ,.,.-.t ,... .i
--
l it i iii ~ l l l ¢" " " - ""'4 " " "p" " "". * ... . . .. ..- -. ".". ". " • - ,." -"" " ,p'



29

The first derivatives of P-m(p) and Qnm(q) with respect to the argument are

gi ven by

d P- m(p)
(lp2 d - (lp2 p(M-l)(p) +rp p-(p)

d p nn

m,(4.3.10)
( 2 1) d 2q) (2 1) Q (I)(q) + m qQm (q)

d q n n

The representation of the potential functions in terms of the associ-

ated Legendre function as shown in Eq. (4.3.1) enables us to write the

partial derivative with respect to r and zj in very simple forms. Recall-

ing Eq. (4.2.2), one can easily obtain:

3rPj Pj)

2 2 2

r J (q J )

(4.3.11)
3q. q r

)r ( 2 2 2

3q (q 2 -1z

3z a q~ (q 2_p 2

By ow Ans of Eqs. (4.3.8)-(4.3.10), it can be readily shown that

*n+1 1-

nO m-O nn n ( n

[Ancos m6 + B sin m6] (A.a.12)

- rim .-.
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4 ~ ~ ~ n+l p
n 2 Pn(p) Qm(q )[A cos m +Bn sin mS] (4.3.13)

3zj n0m- jnm ru

and Eq. (4.3.1) can also be written in the form

S__= r [p-(m+l)(p) Q (m+l) (q)+P -(m-) (P.) o(m-i) (q)]maj nnn3 n(4.3.14)

. [Ajnmcos m + BjnmS in m]

4.4 Some Remarks on the Potential Functions

(i) The Legendre associated function of the first kind used in the

expressions of the potential functions in Eq. (4.3.2) is equivalent

to the following definition

PM() m(n- m)! l

S ( (n +m)! p )

where

PM(p) - (-l) m ( 1 -p2)m/2 dP n(p) (4.-.2)

dp

for all values of m < n.

(ii) For values of m > n, Eq. (4.3.2) generates a function of p singular

at p = I or p = -1. This situation is encountered in our potential

functions when m - n and m = n+l. However, it will be shown later

that for these two particular cases, singularities inside the medium

are always removable.

(iii) The sum with respect to m in the expression of the potential func-

tion is truncated after the value m = n+1.

S ... .. , . -
4~ a . -. -. . ~.. :. ~. . - - PJK
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CHAPTER 5

THE FIRST BOUNDARY VALUE PROBLEM

5.1 Introduction

The first boundary value problem consists of finding stresses and dis-

placements of an elastic body in equilibrium when the body forces are known

and the displacements of the body are prescribed. In this chapter, the

first boundary value problem is solved for an unbounded elastic trans-

versely isotropic medium containing a spheroidal cavity with zero body

forces and vanishing stress and displacement fields at infinity. Explicit

solutions are presented for two problems involving a rigid spheroidal

inclusion.

5.2 Fundamental Formulae

The components of the displacement vector in Eqs. (3.2.13) can be

written as

=U + U + u

r  rl r2 r3

U6  u 1 + u + U(5.2.1)el 62 63

uz = zl + U z2

where
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. 1 3 k. 3€.u . - . . _ -- 9 u --1 I
rj 3r eu r 36 zj V1 az2

(5.2.2)

U 3  r ae ' u03 r

Substituting the expressions of 4. and defined by Eqs. (4.3.1) into

Eqs. (5.2.2) we obtain:

Un+1)p )Q(qj ' p(m-l)(p Q(ml)(qJ
Ur -_[p-(l (~ ) (q Pn ) Q )(q

rj n-O m-O n in n n

[Ajnm cos me + B nmsin m ]

,*V.

U 3  y n+[ (m+l)(p) ^(m+l)(3 +p_(rnl)(p)0Ur3 " Pn (P)Qn 3)+n o(-l)n (q 3 ) 1

n-0 m-O

" [A3nm Cos me - B 3nmsin me]

n+l

u (nO nO p(m+l)(Pi) Q(m+l)(q +p-(m-l)(P.) (m-i)

(5.2.3)
.[B cnmcos -e - A jnmsin m8]

n+l
ue3 InO .0[[pmln (P3) Qn-m) (3)- _p-ln (P3) Qn ml (q3) }

*[B cos me + A sin m]
3nm 3nin

n+l 2k.
u -- P(p) Q n (q.) [An cos me+B. sin m5S]n n

ZJ 0 m * ji n j jnm jnin

On the surface of a spheroidal cavity (q j - p and pj p), the components

of the displacement vector become:

'V
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= -"nC i - f sp +l)
Ur n0muO nm n

U [=7 cos m+a sin m.] P (p)

im rm n

4n0O mM0

+ [-E n ~ os M =n i mCI P~m1 np~
M n+lu M .[ 7 n sin m' + a cos M ] p-( l (p) (5.'.')

nm°

N , M Cos m- + ( sin m6] P-(P)%Uz [" n nm n

n--0 m-O

where

(m-l) ( ) (M+) (P A Q(m+l) (3) A
JIM Qn 1 1nm n 2 2nm n A3nm

a Q (-1 )A + 2(k2  ) A + (z

nm n 1 Anm n 2 2nm n 3 3nm

2k2k2 I
",,m v I n l" I" 1n2V

(5.2.5)

run = Qn B1nm +ln (0 B 2nm +Q)n 3 B3nm

(M-) (m-1 )  (m-l)
nm "Q Icm) B mm + - .2 B2nm - Qn (3) 3nm

- 2k

nm n 1 Bnm 2 2ru

With respect to rectangular Cartisian coordinates, the components of

the displacement vector (ux, Uy, uz ) can be written in terms of (urt, uc,

uz) as follows:

,
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ux - U rCOS e - u sin e

U y U rSin e + ueCos e (5.2.6)

U U
z z

Substituting Eqs. (5.2.4) into Eqs. (5.2.6) we obtain:

o n+l
[u ( s cos(m+l)e-c sin(m+ n)e] p-(i' (p)

sn-)]-(m-l)+ [3=n cos(m-1); +E n m Pn (

un=l {[on sin(rn+i)C 7i cos(n-~-) ] p-(l(r,)
Uy n=O m0nO nm n(5 .7

*+ [-8 sin(m-i)C+2 cos(m-i)C] p-(m-i) (p)}
nm nm n

n+i

u = " COs me + L sin m] ] P (p)

UZ n nm

if a displacement vector on the surface of the spheriodal cavity is

prescribed, then the components of that vector, in Cartesian coordinates,

u, v, and w can be represented by a series expansion of spherical harmonics

as foilows:

nU- (u cos m + u sin m ) P-mp)
nlO m-O nm nm n

oo n - (mv 1 / (v cos me + v sin M) P p) (5.2.8)

n0 nw / I (W nmcos m + w sin me) P n(p)

W (W n Cos, m. . , . . .,m P n (..
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where Pm (p) is the Legendre associated function, defined by Eq. (4.3.2),

satisfying the following orthogonality condition

1 6 (i- M)!

P-M ( M(p) dp (5.2.9)

Using this orthogonality property and that of the trigonometric

functions, the coefficients in Eqs. (5.2.8) can be evaluated by:

2r 1

u = (n+m)! (2n+l) di u(pe) Pn() me dp
nm (n- m)! 2rX f n

(5.2.10)

2t 1
n (n-m)! (2n+) de f u(p,8) P-m (p)sin me dpm o o

in which 10 - 2 and m - I for m 0. The coefficients Vnm, Vnm, Wnm, and

Wnm can be evaluated in a similar manner. Equating coefficients in the

identical trigonometric and spherical functions in (5.2.7) to those in

(5.2.8) yields

- nm u

nm -2 nm+1 nrn4-I

n nm

(VlU

':K';..Ke-:--nK 4J'm+IJ n. +-
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r for m = 0

T 1 for m < n
rn =

0 for m = n,n+l

nO n(n+l) nO

Bn = U0

1 -

Brim - (Un - vn) for 2 < m < n+l

(5.2.11)

Bnl VnO

nm = 2" (v nm-1 + U nm-1) for 2 < m < n+l

n w for m < n and y -0 for m - n+1
nm nm -nm

y nmW nm for m <n and yn 0O for m -n n+1

Equations (5.2.11) can be written in matrix forms as follows

-Q (re+l), Q ( (+l) (p) Q ( 3A+l) 0 A)-n £°) -n 2 n 3lnm

(m-1) (m-1)() (m-1) = R m
Qn (Pl) Qn ) Qn (03) Anm n

(5.2.12a)
2k 1  2k2

- Qn 2 n 0 m

. . . .- - - - - - . . . . ..... . ". . . . . "
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(+l) (m+)() Q(m+l) 7 EQ Q i 1n (C Q 6 Blnm

Q (Mr-) Q i(M-l) ( - (M-1) (C3B
n "n 2 n 3 2nm Rnm

2 (5.2.12b)
i2k1  2k

Q = Q (C) 0 B3
2

in which [Rnm] and [Rflil are 3 x I matrices defined, for different values

of m, as follows:

for a - I

2 (U 2 +V 2 ) 2 (V 2 - U 2

[Rni] U nO [Rn] = VnO (5.2.13a)

nl - Wnl

for 2 < a < n-1

1 -1-

2 nmn+l n)+1 2 nm+l nm+I

[Rn] = - (un -Vnm l [R 3 (Vn 4Un ) (5.2.l)
rim 2 nm-i vnm-iI Im 2 nm-I +nm-i

rim _ rm

for mnn I

() , 0

[Rnn]= - ( -- Vnn-) nn -(V +Unl)(5.2.13c)
nn 2 nn-1 nn-1 nn 2 nn-i nn-1[

K L
nn nn

.4%
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for m = n + I

0 0T
1 -

1 -

-v .n) [- + U-(v
[R+ = v ( [nn+] 2 f +unn) (5.2.13.d)

L o 0

If m = 0, the stress field becomes independent of 6. This is the

axisymmetric case which will be discussed in the next section. Equations

(5.2.12a) and (5.2.12b) have a unique solution if the determinant A is not

zero:

2k m (m+l) (m-l) (m-1) (m+l)

V 2  n 2 n 1 n 3 n 1 n 3

2k I f(n+) ( m ) Q(M ) Q(5.2.14)2kl o (0i IQn Ul( ) Qn (Q3) +Qn U"Q
Vi n 1 n 2 n 3 n 2 n

As mentioned in the previous chapter, the Legendre associated function of

the first kind defined by (4.3.2) is singular at p = I and -1 for the two

cases corresponding to m = n and m n+L. However, the equations ann =

enn+ 1' ann a nn+1 ' Ynn+1 = Ynn+I 0 automatically remove these

singularities inside the medium.

5.3 The Axisymmetric Problems

Consider the class of problems in which the potentials do not depend

upon 6, therefore the first boundary value problem can be deduced directly

from the preceeding section by taking m 0 for which the potential

functions become:

S -. - . .
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2n 1) A n 0  [P n+I(Pd ')n 'qI, . . 5 3

s0

j -1,2

and the displacements in cylindrical coordinates take the form:

u -2 A(pj Q (Urj, n -Ajn 0 Pn ) Qn i

2k

j A PnP ) Qq) (5. 3.2)Sz n--O v

u 0

uj - 0

The components of the prescribed displacment vector on the sra

or

spheroidal cavity, in the axisymmetric case, can be represented in the

fo rms :

rw - -2O p n(p)

n;O

Here u and w are the components of the displacement vector in the r- and

z-durecton. Expressing Eqs. (5.3.2) on the surface of the spheroi and

equating their coefficients to those in Eqs. (53.3) we obtain:

9.P

4.
speodl cvti h xsmeri ae a e rpeetd i h

foms

• , ..:4.4., . - .. .. .: .:.. z .. ... . ... . .... .. , -.- ....-. . . . . .: . . :. - .. .. .



Qn !: A, 0 A n Al 0 = - TUnl

(5. 3.4)

n :in0 n nO -nG"II

.. V ,.c. r.. .* we determine the unknowns Ann and A~nn which enable us

to determine the stress field without difficulty.

To illustrate the method developed in this chapter, we will consider

the problem of a rigid spheroidal inclusion embedded in a transversely

isotropic medium when the medium is subjected to the following loads at

large distances from the inclusion:

(i) Uniaxial tension in the direction of the axis of symmetry of the

med iur.

(ii) Pure shearing stress in the plane perpendicular to the axis of

symmetry of the medium.

5.4 Rigid Spheroidal Inclusion Under Axisymmetric Uniaxial Tension

The boundary conditions in this case are:

Czz =T 0 -,rr - ... = rz - 0 at infinity (5.4.1)

u = U u - 0 on the surface of spheroid (5.4.2)

In the absence of the inclusion, the uniform stress field (Eqs. 5.4.1) can

be extended throughout the space, thereby violating the boundary conditions

in Eqs. (5.4.2). The stress and displacement field are found to be:

rr r (5.4.3)
zz -rr - z



.J 0

.3

'c C ~C

% We now seek a solution wni.cn, upon superpus£LI, Lu jI1 Th Ui i ')rm i ,

.- removes the residual displacements, given by Eqs. (5.o.), n the surface

of the spheroid. Therefore, consider the problem where the negative of the

displacements given by Eqs. (5.4.4) are specified n the bofdar v , the

spheroidal inclusion. These displacements are:

j. cc1 3  0 13 TO -I

r L i- rP

• (5.2.5)

-( +c ) T +hC [c + a

(c11 +7 I T-i
z" . P, p)

[ 3 3 (c 1 1 c 1 2)" 2c1 3(c c - 2cl3 3 i1i 9  1

in which a and h are the iemiaxes of the spheroid. From Eqs. (5.3.3) it is

easily found that the only non-zero coefficients are those corresponding to

n = 1. Thus,

2c T0 b13 0

c. (C +c) - 2c13}

-(c c1 2 ) , a

[c33 (C3 i c,,) - -3 1

Equations (5.3.4) become in this case:

-.. :-.........-.-.,.-.-....... ., . ... _. ._..-. -,.-.-- . -..-.-. .- .',-.-..,-..-.',.,-'.. . ,-, , ": -:, . -,-.



a2

C c 1 3 T0 b

S' 3 3 (c 1 1  C1 2 ) - 2c13

= ~(5. 4.7)

kI  k (c i 12) 01

"*" 1 .10 2[c 3 3 ( , 1 +C 1 2 ) -C13,

Solving the simultaneous equations we obtain:

TO  2c3k2

A 11 0  T I 0 b Q1 (.2
2 ! [c 3 3 (c 1 1 +c) - 2c13 2

1

(C +C2) aQ,(c2 )]

(5.A.P)
-TO  13

A, -T- b 01 (A 1 0  2 [c 3 3 (C1i +c 2 ) - 2c 3 ]

33(c1 12 13 1

(C +C112 a0 1 (.')]

where

k, k

" Qi~ Q (C1 )--~'~ Q (C'0)
2 1 1

The potential functions, therefore, are

2.

= 3 A [P (p.) Q.(q) - Q(q) ] (j 1,2) (5.A.9)
-~ 3 j102 2 j 0

Substituting Eqs. (5.4.9) into Eqs. (3.2.13) and (3.2.14) and adding the

solution obtained in the absence of the inclusion, we obtain the desired

solution for which the displacements and stresses become:

, ~~~~~~~~~~~~~.....,".." .. "-.."........ ...>->--'>.-.-. ..'--; ". -.-v...,...----..--.-. . .
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c "0Al Q 1(q) A21 0 1(q,)
13 A1 1 0  1 A 2 1 0  1

u r + -[ - r
Ic ( + 2c a q 1 CL (q,1c 3 3 (c 1 i +c 1 2) _ 2c 1 3  1 1) 2

(c _1 +__1____TO0_ + 2kI A110  Ql(ql)Uz = I i c1 )A l

[c3 3 (c1 1 +c 12) -13 a 1 1 q

2k2 A21 0 Ql (q
)

2

2 q2 2

rr 2c44 2 Ln (2 2

j.11 q q

Q (q (5 .4 .10 )
%2 2
% 3 (q - )

D. 10

0+ 2c I • n

S.z

2 A (q 
(k - p)

r+ - 2c 2l L 1 n + 2 2

2 A, . -q 1 -q ( p

+ 1 ( (5.4.10) 10
zvz (q -1)

%

2 A ( +k) q 1

j " j



5.5 Rigid Spheroidal Inclusion Under Pure Shearing Stress in the Plane of
Isotropy

The boundary conditions in this case are:

7' - = = = = 0 at infinity (5.5.1)Zxy 0 ' xx yy zz xz yz

u = = u = 0 on the surface of the spheroid (5.5.2)

the loading conditions (5.5.1) is equivalent, in cylindrical coordinates,

to

"rr -7. 0 sin 2e r- T 0 cos 2e zz rz a c Z 0 (5.5.3)

In the absence of the inclusion, Eqs. (5.5.1) or (5.5.3) represent the

stress field in the medium. The displacement field, accordingly, is found

to be:

U 2c 6 j ' y z 0 (554)
x -C 6666

Consider the problem where the negative of these displacements are

specified on the boundary of the spheroid. Thus,

7 0 TO  o 0 2.ob
b p -s - - P (p)sin

266 ° 266 C6 6  1
(5.5.5)

= 0 to 2 :- rob -. .. . T l0b (
2c x b(1- p) 'cos - = -- p p)cos

66 c 6 6  C6 6  (

w 0

- . . ~ -
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' Comparing Eqs. (5.5.5) to Eqs. (5.2.6), we find that the only non-zero

coefficients are:

_ rb Ob

~0
cV - c66 (5.5.6)

by inspecting Eqs. (5.2.11) and (5.2.13) we conclude that the desired

problem is corresponding LO n = 1, m = 2, A; 0, and B, to be
12 112

d -termined. Therefore, Eqs. (5.2.12B) become:

1: 3) 8112

Tob

1 1B, (5.5.7)
I 0 -Ol , .13 )  66

2k

1~ B312-" "" "2 Y 2 B - __ -

which have the solution:

k'Vb
21 0

1.2 (kl-k,)D c 6 6

=- ~ (5.5 .8)k 2 ko)D c 6 6

1 2ob

3 -~ 66

where

- 3 ' 11

'-
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The potential functions corresponding to the problem at hand are:

2a. 2 2 2
3 -- 1BjI 2 [P 2

2 (pj) Q2 (qj) - Po 2 (p ) QO (q)] sin 2e

(5.5.9)
2 c 3  -2 2 -2 2
_, -B [P(p9 Q (q P p Q( cos 29
3 312 [2 Q2 (q 3 ) 0 p 3 Q0 (q 3)

Substituting into Eqs. (3.2.2) and adding the solution of that in the

absence of the cavity, we obtain the following displacements and stresses:

=0 r B31  Q1 (q3) Q B (q.)
u = - - I " + 7 +12
r 2 2 a qj(

6 3 (3

B c66 -( 6 p 2 +(8p -3) ,sin 2
3r 3 j1 j12 ~ i 3 3 .

B3 1 2  Qj 3  ~ Qq
26 3 (q 3 - 1  j.1 ~.(q~~

3

+I 2 4 2
3r3  j 2  q(p 6p +8pj-3)}cos 2

j=1
2 1

2 k.
u 2 7 B j =12 (p. 3p + 2 )sin 2 '-

3r- i 12 , .

,-

i,-~........-.-,,..--......- .-.-.-.....- . :. 1 ...

,-U.-.-.. .' ",' ,, .'- . ,' '- v,_. , ,' -'. . . -' i "f " i i I ,



47

2 B (i +k )  q

{r + 2c4 4 r
2 1 12 2 2 2rr 0 4 J-1 l a3 v2 (q 2_ 1) 2(q - p)

ji i j

B3 1 2  Q1 (q) 2 B 1  Q1 (q1 )

Oa3 (q - ) J-I aj (q-L)

2c 3 2 4 2+4 7 B a q(pj- 6 p +8pj 3)}sin 26

r4 -~ j 12 j j jr "jul

22 B2 2
{- 0 + C4 4  jal r i i.v 3 j - 22

B312  Q1 (q3) 2 B 1 (q
31 2 23+ r -1 )2 1

C 3 (q 3 - J- 1 (q1-l)

2c66 3 2 2
- Bj1 2  B q (p4 - 6 pj +8pj - 3)}sin 2'
r Jal j 1 1

az -2c 22 sin 20

jul 43 (q2-l)2 (q2-p )

4 3 B ci(I+k)
- c r 12 (p. -3p +2)

rz rl V.

3 2 B 12 (I +k p

J12

- .r 2 , sin ,
2 J-1. 'A (q 1 - )(q- p
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B31 2  P3 __

z 44 2 2 2 2
c 3 (q3-1) (q3- 3 .

2 3 B a 2 (1+k 3
+ - J12 Jj i() 3 3p+2)} cos 26

3 . ( -3

B B 12 312 q3  B31 2 Q1(q3)are = {t0 -2c6 6 r - 2 2 2 2 C 66  2_ (5.5.10)OL3 (q3 l)(q 3-P3)  O3 (q3 1)

Q+(q 1 )+ c6 6  j 2j q_ -__

j1 CL (q2  )

24 3
2c6 6  B 4 2 - 3)1 Cos 26

4 B q (p. 6p2 j 8p- 2
r jai Ir

At the spheroid interface, these equations may be reduced to:

r z

2"!
ar 2 B (1 +k.)

i -2c 44_ - T 32 sin 2-rr b4  j~1 2 (02 ~p2 ) -

b° j

ar 2 1 + k. 2 1
66 - 2c4 4  -- *.j-*l *j . - 3

b ja \)3 P2

ar .. B ( + k.)
T-2 j12 si 2-

°zz 44 4 l 2 2 sin2b j-l v.; p)

r 2 B. (I +k.) p
2c, 7 2 sin 2'

rz b . (C. -p )

Br 312 P
z -2c. 2 Cos 2-

3 .3 - p )

44.
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2

ar B 32 1Or - 2c6 b4 312 i____

66 4 2 2 cos 20 (5.5.11)
v3  ( 3 -p

2)

If we obtain a transformation of the stress components from cylindrical

coordinates to spheroidal coordinates by means of the equations in Appendix

B, we obtain

22 r
S2 r t sin 2>

abD r2 +s 4z2

2 2 2
____ (I+kl) (i-v 2) (il+k2)(1-v 1)

2 1 2 4 2 2 4 2)

ab D (k1 -k 2) (r +v 2 s z 2 ) (r +v 1 s z )

(k1 - k2 )
1- 2) ]t 0 sin 2e (5.5.12)

(r 2+s z)2

2 2 2
2 r kl[v3 (l +k 2 ) - 2v2 ]

'" a bD 'k- k 2  (2 + 22 2

2 2

2 2 42 ) 0 si2(r + 1 s z2

2s rz
" 2 2 4 2 t 0 sin 28

a D r +s z

2 r cos 28
abD r2+s4 z2

2
2S 2 zr

( - 3 2 2 4 2 cos 2a D (r +v 3 s z ) +r +s 4 z 2

where D is defined by Eq. (5.5.8) and s - -.
,,. .a
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In a special case where the medium is isotropic, Eqs. (5.5.12) become

after taking the proper limit:

8(1 - ) r2
0 ) 2r 2 4 2 to sin 2e

DO  r + s z

0 d

r
_y r T sin 28

4 2 0
S r2 + s Z 

(5.5.13)

2
S8(1 v)s sin 2

C,, = 22  2 0 sn2

D r + s z
0

8(1 - v) r

C = 2 _2 TOsi_2_.

.4'

whe re

D 2 1)327+ 2
D - ) 0 "v)I0)0 +Sv7)

(5.5.14)

b

al

-0 15

-A-

hre ""tjpeia nluinw uteautetelmto 0 a

urn *~ 6 -(5.5.15,)",

a -.- . . . . . .



Substituting the limiting value of Dointo Eqs. (5.5.13), we obtain the

stresses in the matrix at the spherical inclusion interface.

. P
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CHAPTER 6

THE SECOND BOUNDARY VALUE PROBLEM

6.1 Introduction

The second boundary value problem consists of finding stresses and

displacements of an elastic body in equilibrium when the body forces are

known and the surface forces are prescribed. In succeeding sections of %

this chapter the second boundary value problem is solved for equilibrium of

an elastic transversely isotropic medium containing a spheroidal cavity.

Examples are given for a variety of constant loadings applied at suffi-

ciently large distances from the unloaded cavity in the absence of body

forces.

6.2 Fundamental Formulae

Let nr and nz denote the components of the unit normal (direction

cosines) to the spheroidal surface for which qj The n's may be

evaluated from the expressions

a bn r n (--z( 1)r b) z a"

in which

a 2 2

2"



The projections tr, tz, and t. of the traction vector acting uoon an

area to which the norual is given by the direction cosines nr ind nz  an ne

expressed as follows

t n +~ n
r rr r rz z

t z a n + i n (6.2.2)z gr r zz z

t :7 n + n%:9 )3r r 4z z

We shall express these components in terms of the potential functions

defined by Eqs. (4.3.1). First, however, we will obtain an expression that

will be used frequently in the analysis:

~ 3 3z j q (l-p.)+ p ( 6 2 3
3 3r 3z )q r Z.

N

On the surface of the spheroidal cavity we have qj c and p. = p. Thus,

.(l-p2 ) ! 3

- ] - [ J + p--] (6.2.4)q J q-. (2 - 1)1 r ] z
j j j -o

Using Eqs. (4.2.3) and (6.2.1) we obtain

*3 3- 3
7 uJ [n v n ] (6.2.5)

j q j r

therefore,

%.'

.
.4?

-4



q oj 6 2 6 E PROBLEM

!ctur Due to (p1 and 2

iscs of findin
n which is based on two potentials 5u hn h

icernent vector due to either part, say
J. In succeedi

im is solved for

k. O taining a sph
u -- I .(6.3.1)
ij z 'it loadings app

Ivity in the a

.~2,the components of the traction

C1 a. z. n

.3 3 ~the unit normi

i q o. * Tht

*z

r

i i (6.3.2)

z

r

r )z j q=



It is not difficult to show that by means oi Eqs. (3.2.d (o.2.o), and

(6.3.1), Eqs. (6.3.2) take tne form:

I (~k.) u.t-.- (c. b--" -_c-
rj X .v, q. qj~c.

t C bc

+ 3 (c(c12  2 rj ,,
b v., qj c.b

I (l+k.) 4u.
tej - C 4 4 b --- [ 1- 1 (6.3.3)

) q q. o.

122 3 3.-2~
a c1  k )u.

b 12 2 j q=o

2. (l+k ) av3ut z - C c b [ _I ]
Xj 44 2 . k 3q.i qJjm kj qj qj=oj

6.4 The Components of the Traction Vector Due to ;P'

The components of the displacement vector due to the potential func-
1

tion i (the 'curl" portion) can be written as:

u 3W , Uz3  (6. .1)
r3 8 U 3 6 3 3T z

It can be shown that Eqe. (6.4.1) satisfy the following equation:

+ . r3 
(6.4.2)

r 38 r ;r



Substituting Eqs. (3.2.1) into Eqs. (6.2.2) and setting Uz3  0 0, the compo-

nents of the traction vector due to the potential function become:

3ur C1  auc r3 . 12 ( 3 + nr) U 3

q No

r3~~ 3 Cl *

c44 aUr3

3 az 3z
3 30

au c 44 (6.4.3)iUr3 + u,3 u,3 n 4 nu0
t3c 6 6 [ r3 8+}rr z

Sq3=3

c44 aur3 aUr3 + 1u83 Ur3-+c [ +--+-] n
z3  V r 13 3r z

3q3P3 q3 3

By using Eqs. (3.2.8), (6.2.6), (6.4.1), and (6.4.2), it can be shown that

Eqs. (6.4.3) have the form:

1 V dur aauei 3  r3 -u83

t b~i - q [+r 3  ({c66b 3 [ q 3 ] q3 3 66 b [Ur3 + -a -  q 3

c66  '3 , u,3 a aur3
tO3 (- b -- ] + 1-- u 3 (6.4.4)

83 3 3q3 bq aeqe3 q3
Ur3

c44 a r3
t i-- [r-

z3 A by 3  z 3  "
q 3 -o-

rl
3..... .0.

3 3
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6.5 The Cornpoernt-; of the Traction Vector t Terms of the Legendre
kociated Functions

Expressions of the displacement components are given by Eqs. (5.2.3).

Substituting these expressions into Eqs. (o.3.3) and (6.4.4) we obtain,

after some algebraic manipulation, the following expressions for the compo-

nents of the traction vector on the surface of the spheroidal cavity:

rj jn -(m i)(j)+N. -(m-) Anm° nm

t p -(M+) (p) + N P -(M-)(p) cos M- - B3 snin :n-
r3 XM3nm n 3nm n 3nm 3nm

t- -M Pn (p) + Nn. P (P)][jn t cos me-A jnmsin mte
ej X n jnm n Jl

(6.5.1)

t 3  [ Pn (m+I )(p ) - N P-(tl) (p)IIB 3 cos me +A3  sin -n,]
13X 3nm n 3nm n nc3m

1 S Pm (p) [A. cos me + B sin mC]
Xzj j r n nm jnm

t S P-m(p) (Acos ma - B sin m6]
z3 X 3nmn 3m M 3m

where:

(14k 3Q (m+l) (q

jnm - 44 b V [ q j

- a (c1 2 - )(m+l) Qn

|b
4v



C b 3 n -(3) (q3) a (Q (m+I)( )
3nm 66 bL 3 q 3 ] 66b n 3'q3 q3 "  3 '

(Io -I (q)

jnm b.v. [  n
j ri 4 aj je-

a cl1k)

-- (c1 - 2 )(M-l Qn a

b".

(m-l) (6.5.2)
N cQ 3 9  (q3 )

N3  =c 6 6 b- ] + (m -I) (m-1)13 q 3  q3 z0 3  b 66 n (J3)

(i+k.) ;Qr(q)
S. = 2c b -a _- . ] ..,jtirun 44 qI q~o

a -n
S3 ru 2 4 4  r n (p3)

3

By setting

r -trl +tr 2 +tr 3

t5 t al + t2 + t 3 (6.5.3)

tz  tz + t2 + t3 .
z UI z2 

4 z3

and using the following transformation:

t t cos e - t sin ,x r9

t t r sin e + t9 cos 9 (6.5..)

ro
t Utz z

-- ',.- .-. ...- ,-, ,-..- . - v ,'-. ,. -. -... .. .-..... . . .. . . . . - i4.

"" ? "'' "' ' " '" " "-"< " ' '"-S.-. '- * ',''"- :... '. .. ''_.S ':.;,:."]'.; i: ", i£ '



we obtain:

X -c . >m os(+I)- . - sin(i-+-I) P

,- [-, amCOS(r-i) - * sjnkrn-L)-! p-ml)
nqm nqm '

= T "If sinm-H) ~ cos(m+I)] -( (p) (6.55)y n-.0 a ;O 11XM nm .1

+ [--, sin(m-i)- + am co~mi)] -(n-I) (p)

nx~ ,

=:n+l

C- cos m sin n"] P (p)
'z aO O m ama

where:

Snm =  nm Al a m 2nnm M3nm A3nm

nm Alm Alnm + N An + Nn An

'am =S In A I= + SIrn A2am + S 3n A3nm

(6.5.6)

nm - lnm B n + M2nm B2 m - 3nm B3n

am Nlm 1 = + N2 B 2nm - 3nm B3nm

~ S B +-S B -S B
nm m Bm +  2nm 2nm 3nm 3m

If a surface force on the spheroidal cavity is prescribed, then the compo-

0 0 0
nents of that vector, ta Cartesian coordinates, tx, t,, and tz  can be

represented by a series expansion of spherical harmonics as follows:



[.1

60

n0m0(g Cos MC j g sin m&) P M (p)

0 - (6.5.7)

t-- (h cos me + h sin me) Pm(p) (..
nO maO nm nm n

0 1-m
t - (Z cos mC + i sin 0) P()
z ' rim nm M nn-O m0

in which the coefficients gnm, inm, hnm, hnm, Znm, and Fnm can be evaluated

by using the orthogonality property which leads to equations similar to

those of Eqs. (5.2.10). By equating the coefficients in the identical

trigonometric and spherical functions in (6.5.5) to those in (6.5.7) we

obtain the following equations:

"Inm "2 3n m lnm

nm Nnm 3nm 2nm iVnm]

IS S S AL nm 2nm 3nm 3nm

(6.5.8)

-ln m  M2nm  -M3nm  VBlnm

lnm N 2nm -N3nm Bnm nm

Sln m  Sn m  -S 3nm  B3nm

where [Vnmj and iVnmj are defined as follows:

.+ .- ~ _- _+, ....." " ...- , - . + . .-.. . .. ..-.-. .-.... . . .,.. . . . . . . . . . . . .".. . . . . . ... •.. .... . .. . • . •. .-. +



for m 1

1'( ~+ ) (h - 92 n2 n2 2 -n
4[V nl] gnO[ n

for 2 < m < n-

7 (gm 1l+ h~ '# i(h n+i

nm 2 m1 m- m (h IM-1 -nm-I

for m a >
(6.5.~9)

0 0

[V ] I (n- h )[ ] -(h
nn 2 i-I n-I nfl 2 tin-I tin-I

L IL
for mi a +

0p 0

L 0 0



* . o- . . ,

For values of m - n and m - n + 1, singularities at p - 1, -1 are removed

by the equations Snm nm " Ynn+l -nn+l = nn+ - 0.

6.6 The Axisymmetric Problem

For the axisymmetric problem in which the stress field is independent

of e, the potential functions take the form

: 2j.

n O A l (p )Q (q Pn n-i (p - (q (6.6.1)
j n=O(0 +I jn0 nI j n1j nljnl.

j , 2

If a surface force on the spheroidal cavity is prescribed, the compo-

nents of this vector can be represented by:

t r 9 n Pn (p )

t nO n

Therefore, Eqs. (6.5.6) which determine the coefficient Anr and A-In are

reduced to:

-7

lnO nO~ Am0  -nl

(6.6.3)

0 . - A

1nO - nO P 2n0 n0

By solving (6.o.3), the stress and displacement field can be readily .

obtained

r-



As an iLlustration, we will consider in the next sections the problem

of transversely isotropic medium containing a spheroidal cavity when the

medium is subjected, at large distances from the cavity, to

i) Uniaxial tension in the direction of axis of symmetry of the

medium (z-direction).

(ii) Hydrostatic tension in the plane of isotropy (xy-plane).

(iii) Pure shear stress in the plane of isotropy (xy-plane).

(iv) Uniaxial tension in the direction perpendicular to the axis of

symmetry of the medium (x-direction).

Numerical evaluation for case (i) and (iv) are presented in the next

chapter.

P.7 Uniaxial Tension in the z-Direction

This problem is an axisyumetric one in which or= - z 0 . There-

fore, the boundary conditions in this case are

a - To , rr a rC 0 at infinity (b.7.l)

t r t = 0 on the spheroidal surface (6.7.2)

In the absence of the cavity, the state of stress is:

a o =0 (607-0)
0zz ' 3 rr 96 rz .

The components of the residual traction vector on the spheroid are:

0 0
t z 0 n + a 0n 0Q
r rr r rz z (6.7.4,)

0 0 b T0b

t C n + a n -T - p - P (p)z zr r zz z 0 k 77 1

% %



Now, consider the problem in which the negative of these traction :ompo-

nents are specified on the spheroidal cavity, therer3re:

0
t -0r

(6.7.5)

o 1t - -- Tb (p)

Comparing Eqs. (6.7.5) to Eqs. (b.6.2), we find that the )nlv non-zero

coefficient is Z10 -Tob. Therefore,

-L0  -2c44 ( Q+ k +1  c6 )~l

(1 + k2 ) 
2a I

M10 -2c44 1 1 b 6

10 4 . C66 Q1

(6.7.6)

1
S11 " 2c 4(I + k1) Q 1 ( I)

S2 2c44 (I + k2 ) Q

and Eqs. (6.6.3) which determine A110 and A210 become:

*'Ilo 210 A1 1 0  0

LA 0  1 (6.7.7)

Sio s -] Alo_ -l ob
110 210T

from which we obtain

i...



T 0b 2 1+I) l(A1 1 0  2 (+" k ) a

(6.7.8)

• .,- T b (I +k )  aA1T 2((. k)
2 1)

21 2(c44-k 1 AL 3 +*

whe re

44 b I~ 1 'I~ I FI

(6.7.9)

b3 1 (I+ ) +k(2() +_k() )
F1 + - 3 - 1 ]

a(k2 -kl) 12 l Q1 ( l)

The potential functions in this case are:

2a.
I. -_k [p2() Q2 (qj) - Qo(qj)] (j 1,2) (6.7.10)

'j 3 j0 2 I0)

Substituting (6.7.10) into (3.2.1) and adding the solution of the problem

in the absence of the cavity, the displacement and stress field for the

problem at hand become:

S13 A i1. Ql(qj)
u - -r [ +  

-
r [(c + ) -2c12 ]  J;, a (q- 2

(ci+c) 2 2kA QI(qj)
c11 +c 1 2) T0 0 Iu z =z [2 TO +

(c3 (c +c) 2c J-1 a (q )

331.12 1



2 2A (14k.) Iq.)

{rr - j 10 [-c4 0 (q c66 (
=rr ju-i .. '4 % j 

J J ~q - l ;

(I +k,) p.
+ C4 4  2 1 )

j q ( j

2 2A (14k.)1
M-.) - )Q+(q )
- -.l4 4v2 q. 3 4- 6 6 2- 1 ]J 6~ ~ ~~ j . qJ q

C,4(1+k.)P1 LC6 q (U - P)+ [,44( k +2 2 } (6.7.11)Vq (( q 2-p 2

2 A. (+k. Q)q.) q (
zz 0 j-1 2 4 4  (q2 + . 'p2"O. -i (q - i (q -P

2 A .(1+k ) p.(1-p.z

ioi j ii
rz J_- 44 CL (q 2 (

At the spheroid interface, the equations of the stresses In the medium take

the for-m:

2

rr a3 - Aj10 j vj( + kj 2  2 4 2

2 2 2

2c 4 4 s 2  22 (1 +k)z 2 r"

66 a3 JI AJ1 0 ai [ (r 2+V2- 4") z v 2- 4  r 2 2+ 2S4 z
j 3j

(6.7.12)
2

2c44  2 r

S 2 (+k)2 2 4 2
zz ab J-j 1 i r s +2 z

j%



2c s 2 rz
44 7A 2 __(1_+kS2 j vj(l+k) 2 242°rz ab 2  j: i0jj

a I+ v. s zJ

By transforming Eqs. (6.7.12) from cylindrical coordinates to spheroidal

coordinates by means of Eqs. (B.3) in Appendix B we obtain:

2~-~ .. , 0 (1+k 1 )iv A0( -k, -
2 _______ 100 1'

2c, (rr+ s z' 2 I  2 z 2 2 2

b2  r 2  2

ab r S z r s z

2 2 4  Z r

-a-

r + s z

For an Isotropic medium containing a spheroidal cavity, Eqs. (6.7.13) are

reduced by the limiting process to:

S.3 T

0  s!-,.

yy 2(7 - ,)

3 T

0 
10 I

a6 Z( 2(- 5v) [( 5 0.sn

where is the meridional anfig shown in Fig. 8.

"- = -,,----reduced by- " the li'm m iting zi , proces" to:"" "v . ... .. , - ". .. -. ,--.- "'



6.8 Hydrostatic Tension in thie Plane of Lsotropy

The boundary conditions of this probLem are

rr Zz rz

C t - 0 on the spheroidal surface (6.8.2)r z

In the absence of the cavity, the state of stress is represented by Eqs.

(6.8.1). Therefore, the tractions that must be removed to satisfy the

boundary conditions of (t.8.2) are:

t-: n +7 n p- P
r rr r rz z 0 P

(6.8.3)

t n + n 0
z zr r zz z

We now consider the problem in which the negative of these tractions ire

applied on the surface of the spheroidal cavity. Thus,

2 T a -1 (0, 0 684 '
tr P1 (p) , tz  0 (6

It follows that the only non-zero term in Eqs. (6.6.2) is ll -2T~a.

This term is corresponding to n - 1. The coefficients A11 0 and A.,( can be

determined by solving the equations

M A _Ta110 1210 110 0

(6.8.5)
SII 0  S2 1 0  A2 1 0  0

1101



where MI , M2, S11O, and 5,10  are given ov Eqs. 0. .o). iv soi-ing £qs.

(6.d.5) we obtain:

: All --

110 2c6 6 (k -k 1 (.1 ) 0 F

b (I +k I ) 
0

210 66 (k 2 - k)Q() F,

b v (1 +k I ) ( I +K,) Q ( )O ( I

. -
a ~kk

The potential functions for this case take the form:

A " 0 [ P (P) Q ( ) - (qj 3 0 2 0

The stress field becomes:

2 A. (1-k.)(q

rr T 0 + [-c44 2 Q I66 (
.- J (. j

(1+k ) p

S2A2

a' T + -C +-c

".r'. c (  k. ) 2C q+ ( - ,)

q. q (q, - ) (q - )(q" - p-)

%/

r, ' ,



2. (. . 19 (qI -A) .q . . . - -- " .

j1

-,
rz i 2

Ja . (q7-) (q -Pi)

On the spheroidal surface, these equations take the form:

2

"c "

,4 + k p 2 a p ,.

r -- I, -,( - -

a jul 0

ac, 2 A ( + k, I 2a (ip
2C- 7~[.-

S3 j 3

2

4(4 ) A((1p * -' - '

rz- 2 2
b . ( - ) ,

-. . . .



By transforming Eqs. (.8.9) from cylindrical zoordinates to ipherjidal

coordinates by means of Eqs. (B.3) In Appendix 6 je ootain:

'J (1 +k ) (1 +k,) (rI
3 11 .

0 SF1  (k2 - k )

2 1

(1 - s ) (1 - s

242)I2 2 z z
h,(rk 2 s () r rs + Sz

(Ei.8.10)

(I+ k[)(,-; ( 3 (-k)s z -2r
2 1

1(; ) (r S 4

For isotropy, by taking the proper limit we find

d1
(lim F1 ) -i. )

isotropy (1- ) 1-1) 
.Q 

()

where

2 2 2
d* [-(1+v)( 2  I) [Q ( +)] 4(P -1)(2%,+1-3o ) () . -+ ]

d .8.12g
aod, accordingly,
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4"

4 2
2O + s 4 2.

TOS

22 2)_(P2 _,)

T - ( {(3 2 -)Q (o) +2 1 2 (6.8.13)-
.

4 2

+ 2V [ 2 1)Q (P) - z2 [ -1 4 2 2
r +S sz

For an isotropic medium containing a spherical cavity, Eqs. (6.8.13)

become

3 TO  :
30  2

. ( -7- 5 ()7"os'

(6.8. 14,) i

3 T0  2
7 (7 - 5)(- 4 5v sin Y)

where ' is the meridional angle shown in Fig. 8.

b.9 Pure Shear Stress in the Plane of Isotropy

The boundary conditions are

axy T 7 ' = a - a a 7 " ' 0 at infinitv (6.9.1)
xx yy zz xz yz

t t - t on the spherical surface. (b.9.2)
x y z

".4..

In the absence of the cavity, the state of stress in the medium can be

represented by:

"'YX
*.

xy 0 x y zz xz zv

V4. .".-
--- . '. .. '""-. :- ... -... .;. . . .. .2.'-:- , .- ... , '.. . ', ' :. , .t , ,'. , '-' 4, .. , '



L-.W - .*-

or, equivalently in cylindrical coordinates:

' ,3' I, T i '. o 3 =" ' C S - - -" - ="

rr - . - 0 " ' -. C - .z -

and the displacement components are:

r0 r0
Ur 2 r sin 29 u -- rcos29 , u =0 (6.9.5)

66 66

The components of the traction vector generated by the solution of Eq.

(6.9.3) are:

t x zx n on.Oa 2. 2a -

t a a + a n +a n T (1- p ) sin 9 - L- T0 P(p) sin ix 0c x )CY y xz Z 0x 0 1

t a n +a n +a n "T0 2 ( - co9 2a ( Iy yx x yy y yz z 0 P os9- A 0 P I p) Cos i

(6.9.6)

t a n +0 fl +0 fl n 0
y Ixx zy y zzz

Now, we consider the problem in which the negative of these traction compo-

nents ark specified on the surface of the spheroid. Thus,

0 2a -l

t x ' 1 (P Cos(6.9.7)

0
t 0o
z

From Eqs. (6.5.7) and (6.9.7), we find that the only non-zero coefficients

in Eqs. (6.5.7) are:

2-- - - -. a (,. .3)

- . . . . . . . . -. .--



therefore, the problem at hand is corresponding to the case in which m =2,

n 1,and A j1 0. The coefficients B 12are determined from:

'112 '212 "312 B1120

-ZaTh (6.9.9)

L 112 S212 s3 1 2  ILB 31 2 = 

wh e re:

[2

0 1 [c44(1+k1)-6-.c 6
12 b 2v1  4 b 26

2 a2

a2 1  2~ [C4 (1+k)- 6 - c6622 b 2v 2  b 26

Ot3 2 2

3

2 2
2 c a (c+ k a

112 b2 6

2 2
2c 44C c2 (1*k 2) a

N212 -
2  + 2c 66 - Q1 (0 2

bb

2

-33 1
312  62 2 [

b b

% % -3

Ni2 N12 -3 B1 -a 0 (699
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2

S 8c a a(L+k 1)

112 44 3

a 1 2(l+k 2)
2

N' S21  -8c44 a 2 lk)(6.9.1i0)

V 2 2

a -2 8 a 3
S 312 2 44- Q 3 8c44 b3 3

by3  b \j3

The solution of Eqs. (6.9.9), after some algebric manipulation, is given by:

2

B212 2
1(k )F c4 4

kl 2
B m - (6.9.11)

212 ci (kL _k 2)F3 C4 4

V 3 ab 2  T 0

B 312 2 . c -3 3 44

where:

1 1

ab Q1( 3) ab k v2Q1( 2) ab k., Q ( 1)

F3 2 2 22 + 1 (6.9.12)
33  233 3 a2(k1-k 2 ) 2 a 2(k K,)3 213 1 1 2

.,4 * 4 " o " - " -" - " - " . " - " . ' - " . " . " 4 . " " " -"-" -"•"-"•" " • -• " . , 4 2 • "- •" " ' % -
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The potential functions for this case arc:

S 12  P(p Q(q ) - Po2 (P.) Q(qj)] sin 21

(6.9.13)

2 33 B [ -2 2 -2 (p 2 (q C s 2t3 3 312 2 (P3) Q2 (q3 ) - Po2(p 3) 0  cos 

-, 2

Substituting Eqs. (6.9.13) into Eqs. (3.2.1) and adding the solution of the

problem in the absence of the cavity we find,

3
0  3.lq r Q1 (q )U - r + B (l-p)3 (3+p) +-r 2c6 B112 3r 3 1 2a (q - 1)"

3 1r Q (q,)

+ B2 12 ( 3 (lp 2 ) (3+p 2) 2 -,
3r 20 (q2"j)

3 1
3q2  3 r Ql(q 3) sin

312 (-P 3) (3+P2) 2_ 2 * i

3r 2a3 (q -1)
3 3

3
T0  Cql r Q1 (q,)

u5 - r+ B1 1 21---3 (l-p 1 ) (3 +P + 2 1]
2c66  3r 2a1 (q -1)

31
+ B r Q+(qp)

212 3r3 2P2) a2 (q -

Jr2n i"

31
a3q r Q (q3)

312- - 3 (1-p 3) (3 +p 3) --- 2- ]} cos 223r3 2ca3 (q3 -1)
' " ""-

2 2
u B3 2 k i (1-p)(2+ pl) + B 2  (I-P2) 2 2+)1 sin 2 -

Jr2 v, 22 2

~ - ~ ., % - - . - .. - 9 2
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(Tfi +2c r2  B 1 1 2 (sk) I __ q__I __ + B 2 1 2 (14k 2 )_______
0 ,4 3 2 2 2 2 32

1I (q I1 (q I P1  a 2 V 2 (q-L2 (q2-p2)

aq3 ( (q
4. 1 q1  3 __ _ __ _ _c66 B1 12- -- (i-p2) 3+p 1 ) + 1

r 2a -(q

•d 3 Q1
a B2 q 3 Q (q2)

+ 22 B - (1- p2) (3+p2)r 2a 2 (q 2 - 1)

3 1
6 [-33 ( (q

3)+ 2c., B- 3 +p 3 ) 2 ]}sin 2-.
66 r 2a 3 (q 3 -

B 1 2 B+k 2

S44r ( 2 2 2 21
L v v3 (q,-1) (q, .-)

+4k. 2112
3 -" 2 2 2 2

.2 3 (q, -) 2(q2- p)

2 3 3.

-2c 6 6 B 1 12- O (-jq 1 )P)

3 (q )

31q2 3 + .
-2c 6 6 B2 1 2 [- (1 - p,) (3 +p2

r "2 2 (q - i)
3

3 Q (q,)

-2c 6 6 3 2 [ 2 (4 - p3 ) +p3 ) (: sin
r 2 3(q -)

.---. -, 2c A2[ 31 2 (1 +k1 ) __ _ _ __ _ _

S.-- ql PI

.-. 2- (q- 1) )2

-' B2 1 2 (1+ k2 ) q2inz22 2

a 3 q 3 3 p ) Lq)

N., -2 r. I

zz 4 3 2 2 2
' ' -, I 1 (q 1i i (-q+ I" l< Pi . . . +!.



-4 3 B.1 2 a(1 +k)
a rz C44t-  73 : 1-2 (-p 2 (2 +pj)

3r J.1 V1

+ 2r 1 2( 2 sin 29
jol a ivi1 )(

4 3 B.12 I1 k.)
aiz c 4( 2 (-p) (2 .P

3r j-1 ,j.

- 2r -B 31 2 2 C } Ls 29 (6.9.14)
a3v3 (q3  (q3  3)

3 1

0 2c - 7 B (I.-p )3(3p) -r 9 =266 1 Bj12[ 4

2c 6 6  j r 2a (q 1)

J (q2 331 3
- B312[ (1 ( P3) 3 +p 3) + 2

r 2a 3 (q 3 -

2 B312 q3  "
- r 2 ) cos 29

3 (q 3  - 3 - P3) -""'

On the spheroidal surface, the st~ress components in the medium take the

form:

Tr 2  (14k) (I +k)
0z (-1+" )

=-(- 2 2442 2 2 4 2 }sin 28
F (k.-k) r +Vas z r +NJ s z

3 2

2 2

(+k- 1) (I +k2  22 1  22 2
2T r V3 (k 2 _ 2_+,

0 3_ _ 3__ _ _ _ _ _ _ _ _
ar (I+ - ( 2 2 42 2 2 42 Isin 29

ee( 1 -k 2 ) r +-u 2 9 z r +

(6.9.15)

2 2 2
2 r (1 +k) 2 21+o r (___i ) v2  (+k 2) v 2

[ 2 2 4 2 2 2421 sin4
F3 (k, -k 2 ) r+2 9 z r +.v 1 s z
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22 2
O k1 -k (i +kl) (I +k2) v

rz 2 rz 1 ' sin 29

F3 (k r *v2 s z r2 +'d2 s z2

0 2 zr

z - 3 s 2 242 cos2F3  r +vj3 s z

32

Tr F 2 2 4 2 - 1] cos 29F r2 + v3 s z
3 3

The stress components in spheroidal coordinates are obtained by usIng the

transformation in Appendix B and take the form:

2T 0  (I +k )(I - v2 r 2

+ 2 2 2

--°@ " (1+ 2 2  2s42

F3  (k1 -k2) r+ 2S

(I+k )(1 - v 23- 2k 2

2 2 4 2 sin 29(k-k r 2+v 2 s z

2 12 o r____2 (1 +k ), 2
0 +V_1 3 2

-e F v k k r 2+IV 2 s 4

3 3  2 2 (6.9.16)

(I +k 2 )v 3 -2k 2 vI sn2

r-v 2s4 z2

2,T20 2 2 r
= -v s cos 2F 2 2 4 2

3 3

a -n a a n 0



For an isotropic medium, Eqs. (6.9.16) may be reduced to:

d 3  r +s z

.4. + sin Z
d 3  r +SZ (6 .9. 17)

0 - %( 2Cos
d 3 r +S z-

0 0 =0

where

d3)3P 7+ 8,j) Q1()- (P2+(6.9.18)

Furthermore, for an isotropic medium containing a spherical cavity Eqs.

(6.9.17) are reduced to:

(7-5v) (0 v - si~n 2Y) sin 2e

ae 15T 0  (- V- C co 2 Y) cos 26 (6.9.19)

15 (1 - v
a -T (7-5v) T cos y sin 2e

0 0 M 0n f i
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6.10 Uniaxial Tension in the x-Direction

The distribution of the stress field throughout a medium subjected to

uniaxial tension in the x-direction To may be achieved by superposition of

the solutions for the following two cases:
1

(i) ax - y 2 To
1

The solution of case (1) may be obtained directly from Section (6.8)

after replacing To by - To. On the other hand, the solution of case (ii)

can be obtained from the solution of Section (6.9) after replacing 6 by

I(e + and To by To* Therefore, the stress components at the spher-

oidal cavity surface for the desired problem are:

2)3 (1+k )(l+k2 ) (2 4 2 V2
JrI 3)1 2 2 4 2 1

a<%-TO  - (r +S z2)[242 (2

- 0 2sF 1  (k2-k) V2 (r2 + 2 Sz

22 2 2
(I-s v1 ) T (l+kl)(l-v 2 ) r

___ ___ __ ___ _+ 0 1__ _ _ _ 2 _ _ __ _

2 2 4 2 1 ]+ [1+ 2 242
v(r +vI s z )Q (0 I ) F3  (kl-k 2 )  r +v 2 s z

(l+k 2 )(1-V ) r 2

2 2 4 2 ]cos 26
(k -k 2 ) r +v s z

(6.10.1)

T (1+kl)(1-s 2 ) [v3(1+k2) s z +2r 2]

0 1 2 2 4 2
2sF (k2 k) v2 Q(P 2 ) (r +V2 s z22 2 1 42 2

(1+k2 )(1-s 2 V2  [v3(1+k) S z +2r 2
21 1 21 2 4 202

Vi Q(pl) (r + 1 S z) F3

2 2 2 2 2
r(1+k I)v 3-2 1 V2 (1+k 2 )'V3  2 1 V 1 coI

2 2 2 4 2 2 4 2 cos 25
v3 (k -k 2 ) r +v 2 s z r +1 s z
3 2



TO 2 2 zv2+s z2
j 3 S s 2 2 4 2 sin 23

F3  r +v 3 s z

a r r , o = 0

'S nfl fl0,n

'S 'S . S-I



CHAPTER 7

THE EFFECT OF ANISOTROPY ON THE STRESS CONCENTRATION FACTORS

7.1 Introduction

In this chapter, numerical results will be presented for a transverse-

ly isotropic medium containing a spherical cavity subjected to the

following load cases, applied at large distances from the cavity.

(i) Uniaxial tension in the direction of the axis of symmetry of the

material (z-direction).

(ii) Uniaxial tension in the direction perpendicular to the axis of

symmetry of the material (x-direction).

Elementary dimensional considerations show that the stress concentration

factor must depend upon four dimensionless ratios of either the five elas-

tic constants (stiffnesses), or the compliances, or the engineering

constants. Adopting the engineering constants and noting that Poisson's

ratios v and v are dimensionless, the remaining two dimensionless ratios

among E, E, and G can be taken as - and although other ratios are
E E Ihuhohrrto r

possible. To show the effect of anisotropy on the stress concentration

factor in the vicinity of a spherical cavity, we consider hypothetical

materials for which one of the four chosen ratios can vary while the

remaining three ratios are kept fixed at values corresponding to an isotro-

pic material whose Poisson's ratio equals 0.25. Therefore, the ratios

have, at isotropy with v = 0.25, the following values

v v 0.25 - = 1.0 -= 0.4 (7.1.1)
E 'E



* Throughout this chapter, we define the stress concentration factor as the

ratio of the maximum principal stress on the surface of the cavity to the

magnitude of the uniform stress field applied at infinity. Positive and

negative signs are used to denote tensile and compressive stresses

respectively.

Numerical results for the stress concentration factor are plotted on a

coordinate system in which the abscissa represents the varying ratio and

the ordinate represents the stress concentration factor denoted by Kt and

Kc for tensio: and compression respectively. Negative values of Poisson's

ratios do theoretically exist but they may not be physically attainable.

Therefore, they are omitted from the plots and discussion. The asterisk

(*) on the plots indicates the upper or lower limit of any of the four

ratios for positive definiteness of the strain energy function (Eq. 2.4.3)

when the other three ratios are fixed. For each value of the varying

ratio, the locations of Kt and Kc are calculated and shown on a plot in

terms of two angles y and 6 shown in Fig. 8.

7.2 Uniaxial Tension in the z-Direction

This problem was first investigated by Chen [5] who evaluated the

stress concentration factor for a few transversely isotropic materials. In

this section, we will present more numerical data than has been reported

previously in the literature.

It is well known that the tensile and compressive stress concentration

3(9-5'v) an
factors for a spherical cavity in an isotropic medium equal a(n-5,)

2(7-5v)3(il+5v)
2(7-5v) respectively. The former occurs on the equatorial line and

-- . .. . . . ..T-*--:. -T-N -. . . . . .
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changes slightly from 1.929 to 2.167 as Poisson's ratio - traverses the

range 0 to 0.5 and the latter occurs at the pole and changes from -0.214 to

-I. I I as ., tr- ierses the range 1) t) :. 5.

We have calzulated the tensile and compressive stress corncentr-tion

factors for a wide range of crystalline and non-crystalline transversely

isotropic materials including some composite materials possessing high

Young's modulus in the direction of the fibers. Results of the computa-

tions are presented in Table 5 which shows a substantial increase in the

maximum tensile stress for highly anisotropic materials (i.e., Graphite

Thornel). Furthermore, the highest tensile and compressive stresses for

all of the anisotropic materials, listed in Table 5, occur at the equatori-

al line and pole respectively. This is a well recognized situation in

isotropic materials but this observation should not lead to a general con-

clusion applicable to other anisotropic materials. To provide further

insight into the influence of anisotropy on the stress concentration

factor, sensitivity analyses for the four ratios mentioned in the preceed-

ing iection have been made and will be presented newt.

7.2.1 Effect of
E

Figure 9 shows the variation of the nighest tensile and compressive

stress factors Kt and Kc against the variation of the ratio It is seen

6ha E < 1 Kt changes slightly and remains close to 2.0

but for - > 1, Kt increases appreciably as - increases (i.e., for = 10
E E E

and 100, Kt - 4.214 and 11.11). Conversely, the factor Kc decreases as E

pE

increases and becomes negligible for very large values of (i.e., E - 10

and 100, Kc = -0.140 and -0.041).

%. %



In Fig. 10, it is shown that for- = 0.167 the highest tensile stress
E

is calculated at v = 49.8* while the highest Lompressive stress is calcula-

ted at 1 19.2'. As E deviates and becomes larger than 0.167, the loca-
E

tion of the highest tensile stress starts shifting toward the equatorial

line (" = 900) and remains ther for E > 0.5, whereas the location of
E

highest compressive stress starts shifting toward the pole and remains at

the pole for values of F > 0.3.
E

7.2.2 Effect of E
E

The variation of the tensile and compressive stress concentration

factors with - are shown in Fig. 11. It can be observed that
E

(i) As the ratio G rises from 0.01 to 1, Kt decreases from 7.400 to
E

1.749.

(ii) Neither Kt, for - > 1, nor Kc, for - > 0.01, seems to be sensi-

E ' E

tive to the variation of E.

(iii) For a sufficiently large value of G Kt and Kc approach the

values 1.913 and -0.633 respectively.

Figure 12 shows that the location of the highest tensile stress is

found to be on the equatorial line (Y - 90*) for values of < < 0.8. This

location starts shifting toward the pole as increases and deviates trom

0.8. When - becomes sufficiently large, the highest tensile stress occurs,
E

approximately, at Y - 57.3% .  It should also be noted that for all vi

of E, the highest compressive stress occurs at the pole.
E
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7.2.3 Effect of Poisson's Ratios v and v

Figures 13 and 14 show clearly that Poisson's ratios v and v have

little effect on the stress concentration factors Kt and Kc. When trans-

verses the range 0 < v < 3 0.612, Kt changes slightly between 2.028 and
7

2.160 and Kc increases from -0.333 to -0.903. For values of 0 < - <

plotted in Fig. 14, Kt appears to be insensitive to the variation of v and

remains close to 2.0 whereas Kc increases from -0.45 to -2.80. The loca-

tions of the highest tensile and compressive stress are found to be at the

equator and pole respectively for all values of and

7.3 Uniaxial Tension in the Direction Perpendicular to the Axis of Elastic

Symmetry (x-Direction)

Obviously, for the case of an isotropic body with a spherical cavity,

the solutions corresponding to tensions in the x-and z-direction are equi-

valent since these two directions are elastically and geometrically

identical.

For transversely isotropic materials, the magnitude of the highest

principal tensile and compressive stresses, Kt and Kc, are calculated for a

variety of materials. Results of computation are given in Table 6. It is

found that for the majority of these materials, the- highest principal

tensile stress occurs at the pole ( Y - 0). However, for some materials

indicated by an asterisk in Table 6, the highest principal tensile stress

occurs away from the pole. On the other hand, the highest principal

compressive stress for all the materials in Table 6 occurs at 6 - 00 and

%I
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-- 900 The effect of anisotropy on on the stress concentration factor on

the stress concentration factor of the problem at hand is discussed next.

7.3.1 Effect of E
E

Figure 15 presents the variation of the maximum principal tensile and

compressive stress factors, Kt and Kc, on the cavity surface against the

variation of the ratio . It is seen that the factor Kt is insensitive to
E

the variation of -
, changes from a value of slightly above 2.5 to slightlyE'

below 2.0, and approaches a value of 1.946 for fairly large values of E

In contrast, the factor Kc is considerably affected by the variation of p.

attains its absolute minimum (Kc - 2.022) at - 1, and increases monotoni-
E

cally as - increases. The variation of the location of the maximum
E

principal tensile stress when - varies is shown in Fig. 16 while the
E

* maximum principal compressive stress occurs at e - 0* and y - 90.

7.3.2 Effect of G
E

In Fig. 17, Kt is plotted as a function of the ratio . It is seen

that if - rises from 0.01 to 0.4, Kt decreases from 2.923 to 2.022. When

EE

changes from 0.4 to 9, Kt changes slightly from 2.022 to 1.893. For values

of - greater than 9, as - increases, the magnitude of Kt increases. The
E E

location at which Kt is evaluated is shown in the same plot. A similar

plot is made for Kc and shown in Fig. 18. It appears that Kc is insensi-

tive to the variation of G when G < 10 but it increases as the ratio G
E EE

increases (i.e., -.- 100, Kt - 5.003 at 8 - 50° and Y - 86, and Kc -

-4.726 at - 40* and " - 860).

. . . . . . . . " '.€ "
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7.3.3 Effect of V and v

Fig. 19 shows that neither Kt nor Kc is sensitive to the variation of

v. The location at which Kt is evaluated is shown in Fig. 20 whereas Kc is

found to be at 8 - 0* and y - 90U for all plotted values of v. In Fig. 21

Kt and Kc are plotted as a function of v. It is seen that when j changes

from 0 to 0.875, Kt rises from 2.002 to 4.017. The location at which Kt is

evaluated is 0 - 90* and y - 90* for v < 0.25 and is 8 - 90* and Y - 0* for

v > 0.25. In the same plot, Kc changes from -0.525 to -1.115, when

changes from 0 to 0.875, and occur at 8 - 08 and y - 90* .

%
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Table 5. Stress Concentration Factor on the Surface of Spherical Cavity
Under Uniaxial Tension in the Direction of the Axis of Elastic
Symmetry

Material Stress Concentration Factor

Tension (Kt) Compression (Kc)

Beryllium 1.9S0 -0.248

Bone (fresh phalanx) 2.328 -0.654

Cadmium 1.78b -1.033

Ceramics (BaTiO3) 2.048 -0.729

Cobalt 2.285 -0.690

Ecologite 2.130 -0.5,32

Graphite 2.753 -0.669

Graphite Thornel 50 4.683 -0.146

Graphite Thornel 75 5.637 -0.117

Hafnium 2.107 -0.616

Ice 2.231 -0.664

Magnesium 2.129 -0.b33

Micha Schist 1.980 -0.538

Quartz 2.025 -0.491

Rhenium 2.220 -0.596

Silver Aluminum 2.210 -0.743

Titanium 2.155 -0.704

Zinc 1.621 -1.000

Zinc Oxide 2.19b -0.769

Zirconium 2.243 -0.677

Isotropic medium 2.022 -0.587
(' = 0.25)

'. ,, .%P.A
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Table 6. Stress Concentration Factor on the Surface of Spherical Cavity
Under Uniaxial Tension Perpendicular to the Axis of Elastic
Symmetry

Material Stress Concentration Factor

Tension (Kt) Compression (Kc )

Beryllium 1.905 -0.278

Bone (fresh phalanx) 2.127 -0.976

Cadmium 2.316* -0.763

Ceramics (BaTiO3) 2.069* -0.7-24

Cobalt 2.262 -0.770

Ecologire 2.476* -0.630

Graphite 2.918* -0.946

Graphite Thornel 50 1.935 -2.0b6

Graphite Thornel 75 1.921 -2.793

Hafnium 2.075 -0.649

Ice 2.142 -0.726

Magnesium 2.105 -0.6b5

Hicha Schist 2.074* -0.518

Quartz 2.021* -0.526

Rhenium 2.146 -0.566

Silver Aluminum 2.176 -0.812

Titanium 2.177 -0.736

Zinc 2.315 -0.637

Zinc Oxide 2.186 -0.792

Zirconium 2.15U -0.745

Isotropic medium 2.022 -0.587
(y - 0.25)
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CHAPTER 8

SUMMARY, CONCLUSION, AND RECOMMENDATION FOR FURTHER STUDY

8.1 Summary and Conclusion

The principal result of this study has been the development of expli-

cit analytical solutions for the (non-axisymmetric) first and second

boundary value problems of elasticity theory for a spheroidal cavity

embedded in a Lransversely isotropic medium. The analysis is based upon

solutions of the homogeneous displacement equations of equilibrium in terms

of three quasi-harmonic potential functions taken in a special combination

of the associated Legendre functions of the first and second kind. Exact

solutions have been obtained for problems involving a region containing a

rigid spheroidal inclusion and a region containing a traction-free cavity

subjected to constant loadings applied at sufficiently long distances from

the cavity. A tractable problem which can be treated in a similar fashion

is the hyperboloidal notch in a transversely isotropic material under

arbitrary loadings (see Reference [8]).

8.2 Recommendation for Further Study

The applications of the present approach are by no means exhausted in

this work. Further study should be made of the following:
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I. Problems which can be solved directly by the present approach. These

include solutions of spheroidal cavities and inclusions under loading

conditions different from those we have obtained, as well as numerical

investigations including the effect on the stress concentration factors

of the shape ratio of the spheroidal cavity or inclusion and the effect

of anisotropy on the decay of stresses with distance from the cavity or

inclusion.

2. The mixed and mixed-mixed boundary value problems for a transversely

isotropic medium containing a spheroidal cavity or inclusion.

3. Problems in which the elastic medium is bounded by other geometries

(i.e., the hyperbololdal notch).

..

• 1
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Figure 1. Hexagonal Arrays

Figure 2. Honeycom'b Structures
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Figure 3. Stratified Materials
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APPENDIX A.1

LEGENDRE ASSOCIATED FUNCTIONS OF FIRST KIND

P0(p) = p

P1(p) : p

P2(p) I( 3p2 -1)

P3(p) =2 
(5 p - 3)

= 1 -' -

p4 (p) (35p - 30p + 3)

.14

Pl(p) p)
0 2 (1-2
P- (p 1(1- p 2p 1)= 1

1 122

P 1(p) 1 p (1-p2)
2 2

P3 
1 (p) 1 (5p

2 _1)(1 p
3 8

P,(p1 1 2 2
P41(p) = p (7p 3)(i- p

-2) (- p)
2

0 2(1 -p-)

2 () (p3 - 3p +2)
1 6(l-p 2)

P- 2(p) 1 p2)

5%
2 =8

P3 
2 (p) = p (i-p 2 )

P2 (p) 1 (I-p2)(7p2 1)

,4
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APPENDIX A.2

LEGENDRE ASSOCIATED FUNCTIONS OF SECOND KIND

Q .O(q) = I Ln q-+
q Li

Q0( 2 q-1I

Q (q) = 1 Ln q+l
2 q-1

2 q +1 3
(q) = - (3q -1) Ln q-I 2qQ1 23 q -+l 1

Q3(q) = - q (5q 2 -3)I 6 (15q 2 - 4)

3 4 3q 2 - 1 6
Q4 (q) =-L (35q

4 - 30q 2 + 3) Ln q _1 24 q (21q 2 11)

4 ~~16 1 2

Q1 (q) 
= 

Ln

q(q2 _ )1

i+1=(ig 2 -l
Q lI(q)  = 2- (q 2 _ )I, n q 1

q - I (q2 - I)

q+1 (3q -2)
2(q 2 q - 1 (q2 _ i)

Q1(q) = (5q - 1)(q 2 - ) tn q+l q(15q 2 13)q - I 2(q - 1) .

Q, 2 (q) = -- ?I-_
2q -

2 2
Q2(q) 

2
q -1

a2 3 2 + q 5-2 )

Q2 (q) 
= (q2_ 1) Ln + q(53q 2

q-i q -1
2 1)2 q-1 2 2

Q3(q) -5 q (q 2 1) Ln - 15q +10+ 2
q-I q 2
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Q3(q) = -2(3q 2 +1)
0 (q 2_ 1) 3/2

Q 3(q) = - 8q
1((q 2 _1) 3/2

Q3(q) =- 8
(q2 _1) 3/2

Q 3(q) = -5 (q2 _ 1)3/2 tn q+ 1 15q(q2 lOq 8q

Q3 2 (q 2 1/2 (q2 1)3/2
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APPENDIX B

TRANSFORMATION OF THE STRESS COMPONENTS FROM
CYLINDRICAL TO SPHEROIDAL COORDINATES

Let the spheroidal coordinate system be defined by means of the trans-

forzation

r - (q2 p2 )

z - aqp (B.1)

in which it is customary to use q - cosh n and p - cos 8 where the ranges

af t, , and e are

< n < 0 < iT , 0 < e < 2v (B.2)

and let -0 be the value on the surface of a spheroid whose semi-axes are

a and b. Then, a - a cosh n0 , b - a sinh no, and the components of the

stress tensor along three orthogonal directions (n, 0 , 8) can be written in

terms of the components of the stress tensor in the cylindrical coordinate

system as follows.

a 1 r2 4 2 2

r[ o +s z +2s rz ]

ao1 (s4 2 a +r2 a 2s 2r za (B.3)
0 2 + 4 2 rr zz rzr +s z

.
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